Graphing rational functions—2. Finding holes and vertical asymptotes

By Tutor GuyNo Comments

 

In a previous post, I listed the steps you need to follow to analyze and graph a rational function. In this post, I show you how to find the hole(s) and vertical asymptote(s), if they exist. [Check other posts on this website for other steps in analyzing and graphing a rational function.]

In a rational function, holes and vertical asymptotes will only occur where the denominator is equal to zero. So fully factor the function, and look for the roots of the denominator. When a factor in the denominator cancels out with a factor in the numerator, the function will have a hole where the factor equals zero. If the factor in the denominator does not cancel out with a factor in the numerator, there will be a vertical asymptote where the factor equals zero.

Example: Find the holes and vertical asymptotes, if any, for the following rational function:

f(x)=\dfrac{x^2+3x+2}{x^3+4x^2+x-6}

First, fully factor the function:

f(x)=\dfrac{x^2+3x+2}{x^3+4x^2+x-6}=\dfrac{(x+1)(x+2)}{(x-1)(x+2)(x+3)}=\dfrac{(x+1)}{(x-1)(x+3)}

The roots of the denominator are -3, -2 and 1. At x=-2, there is a hole. To find the “value” of the hole, evaluate the reduced function:

f(-2)=\dfrac{(-2+1)}{(-2-1)(-2+3)}=\dfrac{-1}{-3}=\dfrac{1}{3}

This means that when you graph the function, there will be a hole at the point (-2, 1/3).

The vertical asymptotes will be x=-3 and x=1.

Algebra 2, Precalc/Trig
Blue Taste Theme created by Jabox